7MPa double acting ununiform speed rod action 2-stage telescopic cylinders

- Double acting ununiform speed rod action telescopic cylinders
- 2 -stage stroke cylinders require shorter
installation space in the axial direction.
- Fixed cushions at both stroke ends
- Uniform rod action is available to configure hydraulic circuit.

Cylinder Specifications

Type		Type 10	Type 20	Type 30	Type 40	Type 50
Cylinder bore (mm)	1st stage	¢63	$\phi 90$	$\phi 110$	$\phi 125$	¢140
	2nd stage	¢45	¢65	¢80	$\phi 90$	\$100
Nominal pressure		7 MPa				
Maximum allowable pressure		Rod cover side: 15 MPa Cap cover side: 9 MPa				
Proof pressure		Rod cover side: 21 MPa Cap cover side: 14 MPa				
Minimum operating pressure		Rod cover side: 0.6 MPa Cap cover side: 0.3 MPa				
Working speed range		10 to $166 \mathrm{~mm} / \mathrm{s}$ \|	10 to $150 \mathrm{~mm} / \mathrm{s}$	10 to $140 \mathrm{~mm} / \mathrm{s}$	10 to 128mm/s	10 to 118mm/s
Working temperature range		Ambient temperature: -10 to $-50^{\circ} \mathrm{C}$ Fluid temperature: -5 to $+80^{\circ} \mathrm{C}$ (no frezing)				
Structure of cushioning		Fixed cushions at both ends				
Applicable fluid		Petroleum-based fluid (When using another fluid, refer to the table of fluid adaptability.)				
Tolerance for thread		JIS 6g/6H				
Tolerance of stroke		$\begin{aligned} & 0 \text { to } 1000 \mathrm{~mm} \quad \begin{array}{r} +2.8 \\ 1601 \text { to } 2500 \mathrm{~mm} \\ +3.6 \\ \hline .8 \end{array} \end{aligned}$		$\begin{aligned} & 1001 \text { to } 1600 \mathrm{~mm}_{3}^{+3.2} \\ & 2501 \text { to } 3100 \mathrm{~mm}_{0}^{+4.0} \end{aligned}$		

- For the internal structure, refer to the sectional drawings at the end of
- For the internal structure, refer to the sectional drawings at
this catalog.
calculation of cylinder force of 7ОТ-2.

Terminologies
Nominal pressure
Pressure given to a cylinder for convenience of naming
It is not always the same as the working pressure (rated pressure) that guarantees
performance under the specified conditions. Maximum allowable pressure Maximum allowable pressure generated Maximum allowable pressure generated in
cylinder (surge pressure, etc.) Proof pressure
Test pressure against which a cylinder can withstand without unreliable performance at the return to nominal pressure. Minimum operating pressure Minimum pressure at which cylinder installed horizontally operates under no load. Notes) - The hydraulic pressure generated in a cylinder due to the inertia of bad must be lower than the

- When the cylinder works while it
is on pulling side, the pressure
should be 6 MPa or more.
- If the cylinder speed is less than the working speed range, it may speed exceeds the working speed range, the seals may wear earlier, and the cushioning effect may be lost.

Standard Stroke Range	
Type	Stroke
Type 10	50 to 1700
Type 20	50 to 2500
Type 30	50 to 3100
Type 40	50 to 3100
Type 50	50 to 3100

- The above strokes indicate the maximum available
strokes for the standard type
- For the rod buckling, check with the buckling chart in
the selection materials. Contact us for longer strokes

Adaptability of Fluid to Seal Material

Note) \bigcirc : Applicable \times : Inapplicable

Type of telesco ${ }_{\circledast}$ cylinders

- An orifice type attenuation mechanism is used as the standard cushioning mechanism. Semi-standard models with longer cushioning stroke are available.

Cushion (fixed cushion)

An orifice type attenuation mechanism (shock absorber) with a short stroke is used at both stroke ends.
A simple cushion is used between the 1 st and 2nd stages in the extending direction and between the 2nd and 1st stages in the retracting direction
The S cushion (semi-standard) has a cushion stroke longer than the standard cushion.

- The cushions are not available to be adjusted.

Application examples

Platform hoisting machine

Building material hoisting machine

Principle of Operation

Extension side

The hydraulic fluid flowing through port A enters chamber H and gives pushing force to piston O to actuate the 1 st stage. At the same time, the fluid in chamber I is discharged through port B.
When piston O reaches the end on the rod cover side, the hydraulic fluid enters chamber J through port A' of piston O and gives force to piston P to actuate the 2nd stage. At the samemer through the hole in the rod chamber L through the hole in the rod connected to pis throush por B as return fluid through port B of piston O

Retraction side

The hydraulic fluid flowing through port B enters chamber L through port B ' of piston O and flows into chamber K through the hole in the rod connected to piston P. The hydraulic fluid flowing into chamber K gives force to the rod cover side of piston P to actuate the 2 nd stage. At the same time, the fluid in chamber J is discharged from port A through port A^{\prime}. Wyen piston P reaches the cap cover side, the hydraulic fluid enters chamber 1 and gives force the lo fluid in chamber H is discharged from port A .

Output Characteristic Diagrams

Retraction side

The left diagrams show the output at the 1st and ?nd stages on the extension side and retraction side.
the pressure point (A) there is an obvious difference in output between the 1st and 2nd stages. This difference is caused by a difference sectional area. It is clear that the output at the st stage is larger on the extension side and the butput at the ?nd stage is larger on the retraction side. Therefore the cylinder operations can be side. Therefore, the cylinder operations can be confirmed. On the extension side, the 1st stage the retraction side, the 2nd stage operates, and then the 1st stage operates.

- How to order

\star Standard specifications

- Seal material Nitride rubber
- Cushioning Fixed cushion on both ends
(with orifice type attenuation mechanism)
- Port position, air vent position

Mounting style LA, LT
Port positions (©) Air vent position (A)
Mounting style FA, FB, CA, TA, TB
Port positions (A)E Air vent position (C)

* Rod end thread length (dimension A)

Piston rods with longer thread length (dimension A) can be manufactured according to 흠 semi-standard dimension B.

Specification of port and air vent positions Mounting style LA, LT
(A) The standard port positions are (-) (B) (C) and (G), and the standard air (a) (©) (C) ${ }^{(1)}$ vent position is $(\mathrm{A}$. When modifying the positions, enter the symbol shown in the dimensional drawings. When the telescopic rod sen
is provided, the ports are is provided, the ports are
positioned at © and © , and the positioned at (C) and (G), and
air vent is position at ©
Mounting style FA, FB, CA, TA, TB
(A) The standard port positions are A and (E) and the standard air vent position is ©
When modifying the positions, enter the symbol shown in the dimensional drawings.
When the telescopic rod sensor is provided, the ports are positioned at (C) and (G), and the air vent is position at (E).
<Note>
Locate the ports and air vent at a distance of 90° or 180° from one another.

Mounting Style

LA LA style(side lugs)

FB FB style (cap flange)
CA CA style (cap eye)

LT LT style (side lugs)
TA TA style (rod trunnion)

FA FA style (rod flange)

TB TB style (cap trunnion)

Weight Table									Unit: kg
Type	Basic weight	Mounting accessory weight							Additional weight per mm of stroke
		LA	LT	TA	тв	FA	FB	CA	
Type 10	5.7	0.44	0.37	1.08	1.08	0.93	0.93	0.32	0.0084
Type 20	15.4	1.25	1.05	3.06	3.06	2.85	2.85	0.91	0.0169
Type 30	27.0	2.29	1.93	5.61	5.61	4.88	4.88	1.66	0.0212
Type 40	41.4	3.52	2.22	8.64	8.64	7.43	7.43	2.56	0.0313
Type 50	57.2	4.92	4.14	11.99	11.99	10.24	10.24	3.55	0.0431

Calculation example: Telescopic cylinder, type 30 , mounting style FB , stroke 1500 mm
Cylinder weight (kg) = basic weight+mounting accessory weight+(strokeXadditional weight per mm of stroke) $27.0+4.88+(1500 \times 0.0212)=63.68 \mathrm{~kg}$

LA
70T-2 1 LA Series type A B Stroke - C G A
Standard port positions : ©(G)
Standard air vent position: (A)

LT

70T-2 1 LT Series type A B Stroke - C G A
Standard port positions: ©
Standard air vent position: (A)

Symbol	A	D	DM		E		EE		EM		FP	HK			K	
Type 10	25	24	¢73		98		Rc3/8		51		48	\$21.19			26-0.1	
Type 20	35	32	¢105		138		Rc1/2		71		67	¢30h9			34-0.1	
Type 30	40	41	¢125		158		Rc1/2		81		80	\$36h9			$42-0.1$	
Type 40	45	46	\$145		178		Rc3/4		92		93	¢42h9			47-0.1	
Type 50	52	55	¢165		196		Rc3/4		100		107	¢49h9			48-0.1	
Symbol	KK		LE		LH		MM NF		NT		* P		RD		SB	ST
Type 10	M24×2		99		50 ± 0.2		\$27	18		M12			¢59		ф13.5	10
Type 20	M 33×2		139		70 ± 0.2		¢38	24		M16			¢84		¢18	16
Type 30	M39×2		164		85 ± 0.2		¢45	30		M20			¢100		¢22	20
Type 40	M 45×2		184		95 ± 0.2		¢52	36		M24			¢112		¢24	22
Type 50	M52×2		203		105 ± 0.2		¢59	36	M24		50		¢128		¢26	24
Symbol	SV	TN	TS		UA	UE	US	VD	W		WK	xS		* XW	YP	* ZB
Type 10	13	75	110		98	¢89.5	130	32	13		45	93		118	13	145
Type 20	17	105	150		138	$\phi 129$	180	43	17		60	127		162	17	200
Type 30	22	115	175		158	¢155	210	50	20		70	150		190	20	235
Type 40	23	130	205		178	¢177	240	57	2		80	173		218	24	270
Type 50	23	150	230		196	¢193	270	65	25		90	197		247	25	303

FA
70T-2 1 FA Series type A B Stroke - A E C
Standard port positions : (A)(E)
Standard air vent position: ©

- Use a mount and mounting bolts of strength class of JIS8.8 or more

FB

70T-2 1 FB Series type A B Stroke - A E
Standard port positions: (A)E
Standard air vent position: ©

Note) In the case of the cushion type S , the asterisked dimension is increased by 5 mm .

TA
70T-2 1 TA Series type A B Stroke - A E C
Standard port positions : (A)E
Standard air vent position: ©

Note) When installing the cylinder horizontally, support the cylinder weight on the cap cover side (Reference stroke: 600 mm or more)

TB

Standard port positions: (A)E
Standard air vent position: ©

Dimensional Table
Symbol Type
A

Note) In the case of the cushion type S , the asterisked dimension is increased by 5 mm .

Note) When installing the cylinder horizontally, support the cylinder weight on the rod cover side (Reference stroke: 1200 mm or more)

CA
70T-2 1 CA Series type A B Stroke - A E C
Standard port positions : (A)E
Standard air vent position: ©

Note) When installing the cylinder horizontally, support the cylinder weight on the rod cover side (Reference stroke: 1200 mm or more)

Dimensional Table

Symbol	A	CD	D	DM	E	EE	EK	EW	FP	HK		K	KK
Type 10	25	${ }^{\text {2 } 25 H 10 ~}$	24	¢73	98	Rc3/8	95	28-1	48	\$21h9		26	M24×2
Type 20	35	${ }^{\text {¢ }} 35 \mathrm{H} 10$	32	¢105	138	Rc1/2	136	40-1	67	\$30h9		34	M 33×2
Type 30	40	¢45H10	41	¢125	158	Rc1/2	161	50-1	80	\$36h9		42	M39×2
Type 40	45	¢55H10	46	¢145	178	Rc3/4	183	55-1	93	$\phi 42 \mathrm{~h} 9$		47	M 45×2
Type 50	52	¢60H10	55	¢165	196	Rc3/4	200	63-1	107	¢49h9		48	M52×2
Symbol	L	LR	MM	MR	* P	RD	UE	VA	VD	VE	W	* XC	* ZC
Type 10	30	R29	¢27	R22	25	¢59	$\phi 89.5$	14	32	35	13	175	197
Type 20	45	R44	¢38	R30	35	¢84	¢129	21	43	50	17	245	275
Type 30	55	R54	$\phi 45$	R38	40	¢100	$\phi 155$	25	50	60	20	290	328
Type 40	65	R64	¢52	R45	45	¢112	¢177	28	57	69	23	335	380
Type 50	70	R69	¢59	R50	50	¢128	¢193	31	65	82	25	373	423

Note) In the case of the cushion type S, the asterisked dimension is increased by 5 mm .

Semi-standard/Cylinder with telescopic rod sensor (for detection of position in the most extended state) The sensor can be fitted to each mounting style.

Reference Drawing

Maximum Stroke	
Type 10	1300
Type 20	2200
Type 30	2200

- The detection rod is a telescopic rod.
- Fit the 1 st -stage detection rod to the rod end attachment, and secure it tightly.
- The sensor is used to detect the cylinder position in the most extended state. To detect it in the most
retracted state, install optional cap side stroke end sensor.
- The telescopic rod angle and the sensor position can be changed to the right and left. (Only LA and LT, 90 - The standard sensor type is SR101. When using another sensor, specify the sensor type. However, only SR type sensors can be
the end of this catalog.)

Symbol	EF	IA	IB	IC	ID	IE	IF	IG	IH	IJ	IK	IM	IN	IR	IS
Type 10	MAX. 106	20	25 ± 0.1	5	47	60	112	85	roke-66/2+66	MAX. 74	M8×1.25	27	MAX. 147	42	75 ± 0
Type 20	MAX. 142	30	37 ± 0.1	3	54	105	162	85	oke-86/2+70	MAX 86	M10×1.5	35	MAX. 199	52	100 ± 0
Type 30	MAX. 172	35	37 ± 0.1	13	54	105	172	85	(Stroke-86)/2+70	MAX 86	M10×1.5	35	MAX. 229	52	115 ± 0.1

Semi-standard/cap side stroke end sensor (for detection of backward limit position) Patent registered It can be fitted to all mounting styles except CA

- For detection of telescopic cylinder backward limit position
- For detection of telescopic cylinder backward limit po
- Types 10 to 50 have the same external dimensions.

Semi-standard/Stroke adjuster(e.g., Mounting style LA) It can be fitted to all mounting styles except CA.

Width across flats C
Adjustment range: 0 to 3 mm

Lock nut

Symbol	M24×2	M33×2	M 39×2	M 45×2	M52×2
B	36	50	60	70	80
C	41.6	57.7	69.3	80.8	92.4
H	14	20	23	27	31

Calculation of cylinder force

Cylinder operation

\bullet - Extending $\begin{gathered}\text { Rirection } \\ \text { directraction }\end{gathered}$

Note) For the details of the cylinder operation, see the principle of operation.

- Cylinder force in extending direction

1st stage $\quad \mathrm{F}_{1}=\mathrm{A}_{1} \times \mathrm{P} \times \beta(\mathrm{N})$
2nd stage $\mathrm{F}_{2}=\mathrm{A}_{2} \times \mathrm{P} \times \beta(\mathrm{N})$

- Cylinder force in retracting direction

1st stage $\mathrm{F}_{3}=\mathrm{A}_{3} \times \mathrm{P} \times \beta(\mathrm{N})$
2nd stage $\mathrm{F}_{4}=\mathrm{A}_{4} \times \mathrm{P} \times \beta(\mathrm{N})$
A1: Effective sectional area at $1 s t$ stage in extending direction $\left(\mathrm{mm}^{2}\right)$ Az: Effective sectional area at 2nd stage in extending direction (mm^{2}) As: Effective sectional area at 1st stage in retracting direction (mm²) As: Effective sectional area at 2nd stage in retracting direction (mm²) P: Working pressure (MPa) $\quad \beta$: Load rate

The actual cylinder output should be determined in consideration of the resistance of cylinder sliding sections and the pressure loss of the piping and equipment
The load rate refers to the ratio of the actual force applied to the cylinder to the theoretical force (theoretical cylinder force) calculated from the circuit set pressure. Generally, the load rate should be in the following range.

When the inertia force is low: 60 to 80%
When the inertia force is high: 25 to 35% For the calculation examples shown in this catalog, a load rate of 80% is used.

Table of Piston Effective Sectional Area Unit: mm^{2} \begin{tabular}{l|l|l}
Direction \& Extending direction \& Retracting direction

\hline

Type \& Et stage \& 2nd stage \& 1st stage \& 2nd stage

\cline { 2 - 5 } Type 10 \& 3117 \& 1512 \& 911 \& 939

\hline
\end{tabular}

$\xrightarrow[~ N]{\stackrel{N}{\circ}}$
<Example>
Determine the cylinder force at the 1st and 2nd stages in the extending and retracting directions when type 10 double acting telescopic cylinder is used at a set pressure of 7 MPa .
<Answer>
Cylinder force in extending direction (N)
1st stage=Set pressure (MPa)XPiston effective sectiona
area at 1st stage in extending direction $\left(\mathrm{mm}^{2}\right) \times$ Load rate $=7 \times 3117 \times 0.8 \div 17455(\mathrm{~N})$
2nd stage=Set pressure (MPa)×Piston effective sectiona area at 2nd stage in extending direction($\left(\mathrm{mm}^{2}\right) \times$ Load rate $=7 \times 1512 \times 0.8 \div 8467$ (N)
Cylinder force on retracting direction (N)
2nd stage=Set pressure (MPa) XPiston effective sectiona
area at 2nd stage in retracting direction (mm^{2}) \times Load rate $=7 \times 939 \times 0.8 \div 5258$ (N)
1st stage=Set pressure (MPa) XPiston effective sectional area at 1st stage in retracting direction $\left(\mathrm{mm}^{2}\right) \times$ Load rate $=7 \times 911 \times 0.8 \div 5102(\mathrm{~N})$

<Example>

Select an optimum type of double acting telescopic cylinder to obtain a cylinder force of 10000 N at the 1 st stage in the retracting direction at a set pressure of 7 MPa . Determine the cylinder force at the 1 st and 2nd stages in the extending and retracting directions when the selected cylinder is used.
<Answer>
Piston effective ${ }^{\text {cher }}$ cylinder force $(\mathrm{N}) /$ Load rate Set pressure (MPa)

$$
=\frac{10000 / 0.8}{7} \doteqdot 1786
$$

When you select a cylinder bore larger than 1786 from the rod cover side 1st stage column in the table of piston effective sectional area, then type 20 is selected

Cylinder force at each stage

Extending Cylinder force at 1st stage $=7 \times 6362 \times 0.8 \div 35627 \mathrm{~N}$ direction Cylinder force at 2nd stage $=7 \times 3142 \times 0.8 \div 17595 \mathrm{~N}$ Rertracting
direction Cyinder force at 2nd stage $=7 \times 2007 \times 0.8 \doteqdot 11239 \mathrm{~N}$ direction Cylinder force at 1st stage $=7 \times 1944 \times 0.8 \div 10886 \mathrm{~N}$

How to read the buckling chart
How to determine the max. working load according to the telescopic cylinder type

1. Determine in which condition the telescopic cylinder
is mounted among (1) to $\boldsymbol{\Theta}$ shown below.
2. After determining the mounting condition, obtain the
value L for the condition.
value L and the teloscopic load according to the

How to determin
telescopic cylinder type
3. Determine in which condition the telescopic cylinder
is mounted among (1) to 9 shown below.
. Determine the value L according to the max. working load and the telescopic cylinder type from the
buckling chart.
After the mounting condition is determined, the stroke can be obtained from the value L

Mounting conditions of telescopic cylinder

- Pin joint at both ends

-Fixed telescopic cylinder and free rod end
($\mathrm{D}=\mathrm{L} / 1.45$)

- Fixed telescopic cylinder and rod end guide ($\mathrm{D}=1.6 \mathrm{~L}$)

Notes on calculation of piston rod buckling Before calculating the piston rod buckling, it is necessary to examine the method of stopping the cylinder. There are two ways to stop a cylinder: the cylinder stopping method,
where the cylinder is stopped at the cylinder stroke end, and the external stopping method, where the cylinder is stopped by an external stopper. The way of determining
the load varies depending on the method.

- Way of determining the load in the case of cylinder stopping method

Way of determining the load in the case of external stopping method

The cylinder is stopped in the middle by an external stopper as shown in the figure. In this case, the load necessary for buckling calculation is not W , (Set relief pressure
(MPa) \times Piston area $\left(\mathrm{mm}^{2}\right)$).

Confirmation of port diameter according to cylinder speed

The cylinder speed depends on the amount of fluid flowing into the cylinder. Therefore, it is necessary to confirm that the standard port diameter is appropriate. The cylinder speed V is determined by the following formula.

$$
\mathrm{V}=1.67 \times 10^{4} \times \mathrm{Qc} / \mathrm{A}(\mathrm{~mm} / \mathrm{s})
$$

Qc: Amount of fluid supplied into cylinder ((//min)	
A: Piston effective sectional	1st stage in extending direction
area $\left(\mathrm{mm}^{2}\right)$	2nd stage in retracting direction

The following diagram shows the relationship between speed and required flow rate for each size of double acting telescopic cylinder and the relationship between required flow rate and pipe flow velocity for each port diameter.
<Example>
Ascertain whether type 20 double acting telescopic cylinder with the standard port diameter can be used when the speed in the extending direction is $100 \mathrm{~mm} / \mathrm{s}$. Determine the pipe flow velocity (m / s). Ascertain whethe etracting direction is $100 \mathrm{~mm} / \mathrm{s}$.
<Answer>
Draw a line parallel to the horizontal axis from the intersection of the line of cylinder speed of $100 \mathrm{~mm} / \mathrm{s}$ with the line of type 20, and connect the line with the line of port 1/2B (Type 20 double acting telescopic cylinder with standard port diameter).
cylinder speed and type is within thameter with the cylinder can be used. The pipe flow velocity indicated by the vertical line from the intersection of the port diameter is $4.0 \mathrm{~m} / \mathrm{s}$. In the retracting direction, the velocity is 2.0 m / s when two ports are used.

Min. required amount of fluid for cylinder Unit: ℓ \begin{tabular}{l|l}
\hline Type \& Minimum Required Amount of Fluid

\hline

 $\begin{array}{ll}\text { Type } 10 & 1.39 \times 10^{-3} \times \text { stroke }(\mathrm{mm})\end{array}$ Type $202.78 \times 10^{-3} \times$ stroke (mm) $\begin{array}{ll}\text { Type } 30 & 3.98 \times 10^{-3} \times \text { stroke (} \mathrm{mm} \text {) }\end{array}$

Type 40 \& $5.23 \times 10^{-3} \times$ stroke (

\hline mm)
\end{tabular} Type $506.65 \times 10^{-3} \times$ stroke (mm)

- The minimum required amount of fluid for cylinder refers to the amount of fluid ootained by subtracting
amount of fluid on the outlet side of the cylinder
from the amount of fluid on the supply side at the
maximum cylinder stroke.
Telescopic Cylinder Port Diameter

| Series | Type 10 | Type 20 | Type 30 | Type 40 | Type 50 |
| :--- | :--- | :--- | :--- | :--- | :--- | | Port dia. | $\mathrm{Rc} 3 / 8$ | $\mathrm{Rc} 1 / 2$ | $\mathrm{Rc} 1 / 2$ | $\mathrm{Rc} 3 / 4$ | $\mathrm{Rc} 3 / 4$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

- In the usable range, the pipe flow velocity is less than $7 \mathrm{~m} / \mathrm{s}$. Normally, when the pipe flow velocity exceeds $7 \mathrm{~m} / \mathrm{s}$, the piping resistance and the pressure loss are increased, and, as the result of this, the output is decreased when the cylinder operates, and the peed is reduced.
- When the cylinder is used at 6 MPa in the retracting direction, the discharge flow rate on the cap cover side should be less than $3.5 \mathrm{~m} /$ When it is used at 14 MPa in the retracting direction, the discharge flow rate should be less than $5.5 \mathrm{~m} / \mathrm{s}$.

Precautions for use

- Do not apply load to the ram tube end at the 1 st stage. Doing so may cause operation failure
- Avoid applying side load to the piston rod during use.
Doing so can cause operation failure or damage the cylinder. If side load is applied, provide guides, or protect the rod end threads. In such a case, consult us.
- Correctly center the piston rod axis in the load moving direction. Incomplete centering can cause operation failure and damage the cylinder.
- In the case of mounting style TA, TB or CA,
center the rotation axis and the mating mount.
- Correctly fit the mounting bracket of mounting style TA or TB as shown below.

- Ensure that the mounting block has a sufficient risidity to prevent occurrence of deflection from the cylinder thrust force.
- Use mounting bolts of strength class of JIS8.8 or more. For the tightening torque, see the following table.
Incomplete tightening can cause looseness and damage of the bolts.
Tightening Torque Table Unit: $\mathrm{N} \cdot \mathrm{m}$
- Take care that eccentric load is not applied to the piston rod when connecting the rod to the piston rod when co
- As a rod end attachment, the rod eye (T-end), rod eye with spherical bearing (S-end) and rod clevis (Y-end) are recommended as a rule. When using another rod end attachment, contact us.

- The piston rod is made from a hollow pipe Therefore, when fitting a rod end attachment, provide a stopper on the spigot (4 mm) of the
If side load may be applied conne frigot ioint as shown in the figurect the rod as a spigot joint as shown in the figure to protect the neck.
In this case, specify dimension LD of the spanner fitting part and dimension W. (Semi-standard)

Notes on piping

- When the cylinder is used by meter-out control on the rod side, the pressure resistance of the piping (rubber hose, etc.) used on the rod side should be three times or more higher than the max. working
pressure on the cap side.
- Before connecting the piping, flush the inside of the piping.
- When connecting with a rubber hose, do not bend the hose at an angle less than the specified radius.
en air is not collected in the middle of the piping

Uniform speed circuit

- On 70T-2 Series, the pressure receiving areas at the 1st and 2nd stages in the retracting direction are almost identical. Therefore, the ylinder can be operated successively at an amount of fluid on the outlet side when the rod is extended and by meter-in control of amount of fluid on the inlet side when the rod is retracted.
Use a pressure compensation flow control valve
-When back pressure may be applied from the solenoid valve T port, use a T port check valve or a B line pilot check valve.
- When the piping between the valve and the telescopic cylinder is long and the cylinder is stopped in the middlle in the rod extending direction (particularly at the 1 st stage), the rod may return one to several millimeters. In this connect a meter-out flow control valve near the ylinder. cylinder

Example of circuit configuration

Basic speed control

Basic circuit for speed control to successively
operate cylinder at a uniform speed

Note that the cylinder may not operate at a uniform speed if the pressure difference between the inlet (port P) and outlet (port B) of the hydraulic circuit is not more than 1 MPa when the rod is retracted.
Note) The operation may slightly differ depending on the flow control valve used.

- To increase the rod retracting speed, increase the diameter of the piping of port T to reduce the back pressure. Provision of a bypass circuit is also effective.
- To reduce the shock given when the cylinder operates in the extending direction, use a circuit with a pressure reducing valve.
When the cylinder operates at a uniform speed be controlled by the basic speed control circuit. Provide a counterbalance valve on the cap side to cause back pressure

Speed control with bypass circuit Speed control circuit provided with a bypass circuit on the retraction side of the basic speed control circuit to increase
the cylinder speed in the retraction direction

Equipment Configuration

No.	Name
(1)	Manifold
(3)	Solenoid valve
(Flow control vave (pesesure compensation)

(9) Fow controv vave (pressure compensation) (5) Solenoid valve (for bypass)

Speed control with pressure reducing valve Speed control circuit provided with a pressure reducing valve between port P and the solenoid valve of the basic speed control circuit to add a function - Use this circuit when the pressure on the rod side is 7 to 15 MPa . - It can be used as a shock-less circuit for operation in the extending direction.

Equipment Configuration

```
No. Nam
(1) Manifold
(3) Solenoid valv
(3) Fow contolvave (pressure compensation
```

No.	Name
(4)	Flow ontrol value (pressure compenenation)
$\boldsymbol{6}$	Pressure reducing valve

Speed control with counterbalance valve

- To control circuit provided with a counterbalance valve on the cap side

Equipment Configuration

No.	Name
(1)	Manifold
(2	Solenoid valve
(Fow controvd vave (pessurve compenendion)

Speed control with bypass circuit and pressure reducing valve
Speed control circuit with a bypass circuit and a pressure reducing valve - Use this circuit when the pressure on the rod side is 7 to 15 MPa - It can be used as a shock-less circuit for operation in the extending direction.

Equipment Configuration

